Comprehensive mechanical property classification of vapor-grown carbon nanofiber/vinyl ester nanocomposites using support vector machines

نویسندگان

  • O. Abuomar
  • S. Nouranian
  • R. King
  • T. M. Ricks
  • T. E. Lacy
چکیده

In the context of data mining and knowledge discovery, a large dataset of vapor-grown carbon nanofiber (VGCNF)/vinyl ester (VE) nanocomposites was thoroughly analyzed and classified using support vector machines (SVMs) into ten classes of desired mechanical properties. These classes are high true ultimate strength, high true yield strength, high engineering elastic modulus, high engineering ultimate strength, high flexural modulus, high flexural strength, high impact strength, high storage modulus, high loss modulus, and high tan delta. Resubstitution and 3-folds cross validation techniques were applied and different sets of confusion matrices were used to compare and analyze the classifier’s resulting classification performance. The designed SVMs model is resourceful for materials scientists and engineers, because it can be used to qualitatively assess different nanocomposite mechanical responses associated with different combinations of the formulation, processing, and environmental conditions. In addition, the lead time required to develop VGCNF/VE nanocomposites for particular engineering application will be significantly reduced using the designed SVMs classifier. This work specifically present a framework for a fast and reliable classification of a large material dataset with respect to desired mechanical properties, and can be used for all materials within the context of materials science and engineering. 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Materials Informatics and Knowledge Discovery: Mechanical Characterization of Vapor-grown Carbon Nanofiber/ Vinyl Ester Nanocomposites

In this study, data mining and knowledge discovery techniques were employed to acquire new information about the viscoelastic, flexural, compression, and tension properties for vapor-grown carbon nanofiber (VGCNF)/vinyl ester (VE) nanocomposites. These properties were used to design a unified VGCNF/VE framework solely from data derived from a designed experimental study. Formulation and process...

متن کامل

Study on Mechanical and microcrystalline on hybrid nanocomposites by WAXS

The aim of this work is to probe the influence of nanoclay and turmeric spends content on microcrystalline of vinyl ester hybrid nanocomposites. A series of vinyl ester hybrid nanocomposites have been fabricated with varying amounts of TS viz., 0, 2.5, 5, 7.5 and 10 % w/w along with 2% nanoclay. The microcrystalline parameters such as crystallite size and lattice strain of vinyl ester hybrid na...

متن کامل

Influence of Matrix Polarity on the Properties of Ethylene Vinyl Acetate–Carbon Nanofiller Nanocomposites

A series of ethylene vinyl acetate (EVA) nanocomposites using four kinds of EVA with 40, 50, 60, and 70 wt% vinyl acetate (VA) contents and three different carbon-based nanofillers-expanded graphite (EG), multi-walled carbon nanotube (MWCNT), and carbon nanofiber (CNF) have been prepared via solution blending. The influence of the matrix polarity and the nature of nanofillers on the morphology ...

متن کامل

Fabrication and Properties of Ethylene Vinyl Acetate-Carbon Nanofiber Nanocomposites

Carbon nanofiber (CNF) is one of the stiffest materials produced commercially, having excellent mechanical, electrical, and thermal properties. The reinforcement of rubbery matrices by CNFs was studied in the case of ethylene vinyl acetate (EVA). The tensile strength was greatly (61%) increased, even for very low fiber content (i.e., 1.0 wt.%). The surface modification of the fiber by high ener...

متن کامل

Data mining and knowledge discovery in materials science and engineering: A polymer nanocomposites case study

In this study, data mining and knowledge discovery techniques were employed to validate their efficacy in acquiring information about the viscoelastic properties of vapor-grown carbon nanofiber (VGCNF)/ vinyl ester (VE) nanocomposites solely from data derived from a designed experimental study. Formulation and processing factors (VGCNF type, use of a dispersing agent, mixing method, and VGCNF w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015